二十范文网 >工作方案

教学设计数学模板8篇

大家在写教学设计的时候一定要区别教学目标与教学要求,出色的教学设计,能够适应多层次学生的需求,下面是二十范文网小编为您分享的教学设计数学模板8篇,感谢您的参阅。

教学设计数学模板8篇

教学设计数学模板篇1

教学目标:

1、通过对问题情境的探索,学生在动手操作的基础上自己得出除法算式的商;通过比较分析的思维过程,使学生体验到可以用多种方法求商,感受到用口诀求商的简便;掌握用2-6的乘法口诀求商的方法。

2、培养学生合作学习的意识。

教学重难点:掌握用口诀求商的方法。

教具、学具准备:主题图、折叠口算卡片、挂图。

教学过程:

一、创设情境,引入新课

小朋友们,我们昨天已经学习了用口诀求商,今天这节课我们进一步来学习这部分的内容,深入了解乘除法的关系。

(出示情景图)

师:植树节快到了,你观察到了什么。

学生仔细观察,看清图意,找出图中的已知条件。

师:每行栽4棵,可以栽6行,可以求出什么,请你补充问题。

学生独立思考后,列出算式。

列出题中有关信息(主题图示题)

①每行栽4棵②可以栽6行③一共栽了24棵

师:请你选择任两个信息作为条件,然后补充问题,使之成为完整的应用题,再解答。四人小组合作,看谁的方法多!

集体校对,说说你的想法和理由,算式的含义等。

二、做一做

(出示题)个别说说你的怎么样算的?

说说思考的过程(个别说、开火车说)

折叠口算卡片完成做一做的第二题

三、练习巩固

1、练习五第三题,送信,学生独立做在书上。

2、练习五第四题,明确题意,列出乘法算式和除法算式,并校对。

3、挂图出示练习五第五题,游戏的形式完成。

4、练习五第六题,比一比,看谁做得又对又快。

四、课堂小结:

小朋友们,谁来说说这节课我们都学会了哪些本领?

你还有什么疑问的地方吗?

教学设计数学模板篇2

教学目标

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

教学重难点

教学重点:探索并掌握比例的基本性质。

教学难点:根据乘法等式写出正确的比例。

教学工具

ppt课件

教学过程

一、复习导入

1、我们已经认识了比例,谁能说一下什么叫比例?

2、应用比例的意义判断下面的比能否组成比例。

2.4:1.6和60:40

3、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例)板书:比例的基本性质

二、探究新知

1、教学比例各部分的名称。同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第43页看看什么叫比例的项、外项和内项。(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。学生回答的同时,板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。例如:2. 4:1.6 = 60:40外项内项学生认一认,说一说比例中的外项和内项。

2、教学比例的基本性质。

出示例1、

(1)教师:比例有什么性质呢?现在我们就来研究。

(板书:比例的基本性质)学生分别计算出这个比例中两个内项的积和两个外项的积。教师板书:两个外项的积是2.4×40=96两个内项的积是1.6×60=96。

(2)教师:你发现了什么,两个外项的积等于两个内项的积是不是所有的比例都存在这样的特点呢?学生分组计算前面判断过的比例。

(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整。)

(4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。教师说明这叫做比例的基本性质。

(5)如果把比例写成分数形式,比例的基本性质又是怎样的呢?指名学生改写2.4:1.6=60:40这个比例的外项是哪两个数呢?内项呢?当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?(边问边画出交叉线)

(6)能用字母表示这个性质吗?a:b=c:d(b,d≠0)或a/b=c/d;ad=bc。

以前我们是通过计算它们的.比值来判断两个比是不是成比例的。学过比例的基本性质后,也可以应用比例的基本性质来判断两个比能不能组成比例。

三、拓展应用

1、课本43页做一做,应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

(1)6:3和8:5(2)0.2:2.5和4:50

2、根据比例的基本性质在括号里填上合适的数。

8:2=24:() ():15=4:5

3、猜数:老师有一个比例,内项可能是哪两个数,你是怎么样思考的?比例中的外项和内项都有共同的特点吗?

24:()=():2

4、运用比例的基本性质判断下面两个比能不能组成比例。

1/3:1/6和1/2:1/4 1.2:3/4和4/5:5

四、拓展

已知3×40=8×15,根据比例的基本性质改写成比例,你能写出几对比例。提示:先把3和40当作外项,再把它们当作内项。

五、总结

1、通过这节课,我们学到了什么知识?

2、通过这节课我们知道了组成比例的四个数叫做比例的项,其中两端的两个项叫做比例的外项,中间的两个项叫做比例的内项。在比例里两个外项的积等于两个内项的积,这叫做比例的基本性质。利用比例的基本性质我们可以判断两个比能不能组成比例,当然还可以解比例,这是下节课要学习的内容。

六、作业布置

课本43页练习八第5、7题。

板书

比例的基本性质

例1、2. 4:1.6 = 60:40

两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

2.4:1.6=60:40

教学设计数学模板篇3

教学目标:

1、结合具体情境,在解决问题过程中逐步学会概括加法结合律、交换律并能用字母表示,并能用加法定律进行简单的计算。

2、培养学生观察、分析以及自学的能力,掌握一定的学习方法。

教学重难点:

1、引导学生通过观察比较、自主学习的方式探索、理解并掌握加法结合律。

2、培养学生观察、分析以及自学的能力。

教学准备:

1、教师准备:课件

2、学生准备:课本

教学过程:

一、情境引入

师:同学们,今天我们继续了解黄河的有关知识。请看情境图,你知道了哪些信息?根据图中的信息,你能提出什么数学问题?

学生观察情境图,了解黄河的走向,弄清楚黄河流域与黄河长度的区别,汇报自己发现的信息。学生自己提出问题。

师:黄河流域的面积约是多少万平方千米?谁会解答?根据学生回答板书。

二、学生根据图中信息独立列式

方法一:(39+34)+2=75(平方千米)

方法二:39+(34+2)=75(平方千米)

师:黄河全长约多少千米?可以怎样算?

学生列式:(3472+1206)+786 3472+(1206+786) 师:观察这两组算式,你有什么发现?小组研讨,汇报交流 师:这是一个规律吗?想办法验证一下。 经过验证这确实是一个规律,叫加法结合律,你能用字母表示这个规律吗?

生:a+(b+c)=(a+b)+c

学习了加法结合律,加法中还有其他的规律吗?请完成填空,然后观察,看有什么发现? 学生在观察的基础上发现,两个加数交换他们的位置,和不变。

师:这也是加法运算中的`一个规律,叫加法交换律,能用字母表示它吗?

生:a+b=b+a

师:学习了加法的两个定律,能根据加法运算律解决实际问题吗?

三、观察下面算式,想想怎样算比较简便?

282+63+37

生:用加法结合律可以简算

四、自主练习

第1题。独立完成,说说自己的想法。

第3、4题。注意用简算。

五、简要回顾

这节课的学习内容

六、作业

自主练习3题。

人教版小学数学四年级上册第一单元教案

教学设计数学模板篇4

八年级数学上册13.1平方根教学反思

节主要介绍平方根与算术平方根的概念,先讲平方根,再讲算术平方根。平方根和算术平方根的概念属本章的重点内容。它是后面学习实数的准备知识,是学习二次根式,一元二次方程的基础。再下一节立方根的学习可以类比平方根进行,因而平方根的学习必须要打好基础。另外,从运算角度来看,加与减,乘与除,平方与开方互为逆运算,所以平方根的概念在某种程度上也起到了承上的作用。在教材处理上,本节课我从学生的实际出发,设计了一系列教学活动,使学生能够在活动的过程中,主动发现,主动探索知识,以及主动建构所学知识的意义。本课时的重点是:使学生经历观察、探索、思考的过程,理解平方根的概念和求法。本课时的难点是:经历探索平方根性质的过程,并能合理清晰地表达自己的思维过程。在教学过程为落实双基,我注重以下几方面的处理:

1、 重视情景创设,激发学生的求知欲望。

平方根概念的引入,经历了由实验(你能将两个边长为1个单位长度的正方形纸片,剪一剪,拼一拼,得到一个面积最大的正方形吗?),到提出问题(面积为2的正方形,边长是多少呢?),再到解决问题(若设正方形的边长为x,则符合题意的方程为x2=2),最后归纳出问题的实质(要找一个正数,使这个数的平方等于2)。本环节通过学生动脑,动口,充分调动了学生学习的积极性,同时也激发了学生的求知欲望。

不足:本环节的实验是由学生在课下完成,再由教师选取优秀的拼法进行展示和解说,这样做忽略了学生的主体性,如果设计成由学生展示成果并解说,可能会收到更好的效果。

2、抓住概念的本质属性,让学生经历从量变到质变的过程,突破抽象观

平方根概念的得出过程,首先由教师提出设问:一张正方形桌面的边长为1.2m,面积是多少?一张正方形桌面的面积为1.44m2,边长是多少m?进一步提问:一个数的平方等于1.44,这个数是多少?然后由学生通过观察并进行举例,最后总结出平方根的概念。像这样由特殊到一般的推理方法,符合七年级学生的年龄特点,并能容易接受新知,从而达到较好的教学效果。同时这样做,也有利于激发学生饱满的学习热情,引导他们以积极的态度和旺盛的精力主动探索,并且在思考中感受思维的美,在探索解决问题中体验快乐,从而获得最佳效益。

不足:在归纳平方根的概念时,应该使学生加深对“根”字的理解,如果能再说明每一个平方根代表的含义,如2是4的一个平方根,-2是4的另一个平方根,4的平方根为±2.这样可能学生对于平方根概念的理解会更到位。

3、抓住概念的巩固与应用,根据学生实际,灵活调整课堂。

练习1、求下列各数的平方根:

教学设计数学模板篇5

教学目标

1、直观感知四边形,认识四边形的特点,能区分和辨认四边形,进一步认识长方形和正方形,知道它们的角都是直角。

2、通过围一围、找一找、涂一涂、剪一剪、等活动,培养学生观察比较和概括抽象的能力。

3、通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,进一步激发学生的学习兴趣。

教学重难点

认识四边形的共同特点,分辨不同四边形的不同之处。

教学过程

一、引入,从“从趣点”出发

1、认一认四边形

(1)课件出示主题图。

师:你能说出哪些图形的名称?

师:我们学过的长方形、正方形都是四边形。(板题:四边形)

(2)请同学们在书上将四边形涂上阴影

二、学习演练

1、观察讨论:到底什么样的图形是四边形呢?

结合图形得出,师板书:四边形有四条直直的边、有四个角。

学习例1

(1)开放尝试,独立完成。

(2)投影展示,交流讨论。

(3)比较加深,说说那几个图形为什么不是四边形。

2、学生说一说生活中的四边形

3、分类:

(1)小组合作,要求按不同的特点进行分类。每分好一类放在旁边。比比看哪个小组分得多。(老师分发信封)

(2)汇报交流,投影展示,说说分类的方法。

课堂练习

三、练习,从“差异点”提高

4、学习例2

①先用尺子量一量,再用三角板上的角比一比,找出它们之间的不同之处。

②哪两个四边形比较象,不同在哪儿?小结得出:长方形和正方形都是比较特殊的四边形,它们的角都是直角;长方形的对边相等,正方形的四条边都相等。

③长方形和正方形的异同。

四、概括,从“智能点”提升

小结全课,看书巩固。通过这节课,你有哪些收获?

教学设计数学模板篇6

教学目标:

1、用丰富、生动的教学内容,激发学生学习兴趣,巩固用乘法宽口径求商。

2、经历探索乘、除法算式之间的关系,了解用乘法口诀求商的思路。

3、培养学生分析问题和解决问题的能力

教学重点:

通过了解、尝试不同的算法,体会用乘法口诀求商的优点。

教学难点:

培养学生合理选择计算方法的能力。

教法:

实践探索法和演绎概括法。加强直观教学的同时,注重从具体到抽象的提升,初步培养学生抽象思维能力。

教学过程:

一、复习引入

1、口算,说出口诀。

4×2=6×5=2×9=6×3=

5×5=3×4=2×4=5×4=

20÷4=35÷5=12÷3=10÷2=

学生口算,说出得数,并说说计算时用的是哪句口诀。

2、导入新课。

师:上节课我们学会了用乘法口诀求商,这节课我们继续学习用乘法口诀求商中的新知识。

二、互动新授

1、谈话:同学们,王师傅包子铺今天开张了,我们一起去看看吧。(出示例2图)

(1)谈谈你从图中得到了什么信息。(观察并收集信息。)

师:每屉蒸笼装4个包子,有6屉,你知道一共有多少个包子吗?(学生回答。)

教师追问:为什么用乘法计算?怎样列式?(求一共有多少个包子,表示6个4相加和是多少,用乘法计算,列式是:4×6=24)

师:我们在计算这道算式时用的是哪句口诀?(四六二十四)

(2)教师提问:提出什么样的问题才能把这个算式转变成除法算式?

学生看图,改变题目,教师出示:一共有24个包子,每4个一屉,可以装多少屉?

怎样列式?(24÷4=6)

你是怎样想的?用的是哪句口诀?(四六二十四)

(3)师:还可以怎样问?(学生自由发言。)

教师出示题目:一共有24个包子,可以装6屉,每屉装多少个?

怎样列式?(24÷6=4)

你是怎样想的?用的是哪句口诀?(四六二十四)

2、探究乘、除法算式之间的关系。

师:观察黑板上的3道算式,你有什么发现?

学生用自己的语言描述发现的规律。(根据学生探讨的情况,给予积极评价。并且突出强调:乘、除法间的联系,要从算式的变化和算理上理解。)

教师小结:通过观察,同学们或多或少都发现了一些规律,都有4、6、24这三个数,这三个数表示的意思一样。虽然4、6、24在三道算式中的意思完全一样,但条件和问题不一样,算式也就不同,请大家想一想,4、6、24在乘法算式中分别叫什么?在除法算式中又分别叫什么?很多同学也都发现了刚才我们计算的这三道算式其中有一道乘法,两道除法,都用了哪个乘法口诀?(四六二十四)同样我们也可以说,一道乘法口诀可以写出三道算式,如“四六二十四”:4×6=2424÷4=624÷6=4

3、出示一道口诀,让学生写出三道算式。

三六十八

根据学生的交流,教师重述:一个乘法算式可以转换成两个除法算式,相应的问题可以变成求其中的一个乘数。这三个数,其中两个数相乘等于一个数,反过来,两个数相除又等于另一个数。

三、巩固拓展

1、让学生独立完成教材第19页“做一做”的第1题。

先让学生说一说题意,再计算。计算后,同桌互相说一说,怎样想出商。

2、让学生独立完成教材第19页“做一做”的第2题。

让学生观察每组中的3道题,想一想:怎样很快求出各题的商,每到题的口诀各是什么。

3、让学生独立完成教材“练习四”的第5题。

让学生根据小朋友参加“二人三足”游戏的情境写出乘法算式和除法算式。练习时,注意让学生口述图意,提出问题,再写出算式。

交流方法。请学生说一说除法算式的实际含义,并说出,用哪句口诀想商。根据乘法口诀想商,加深对乘、除法关系的了解。

四、课堂小结

师:这节课你学习了哪些知识?

学生自由发言。

教师小结:

这节课我们在复习用乘法口诀求商的同时,还发现了乘法和除法之间的联系,每一组算式里的三个数,其中两个数相乘等于一个数,反过来,两个数相除又等于另一个数,这就是我们过去学过的乘法算式里和除法算式里各部分之间的关系。找到这样的关系,我们在计算除法时就可以想乘法算除法了。

教学设计数学模板篇7

〖教学目标〗

1.借助“森林旅游”的购物情境,进一步让学生熟练掌握一位小数的加减法,培养学生提出问题和解决问题的能力,使学生体会数学的应用价值。

2.通过活动的开展,鼓励学生认真倾听、独立思考、敢于质疑、善于评价、友好合作,培养学生积极的学习态度和良好的学习品质。

〖教材分析〗

本节课是在学生认识了小数、比较简单小数的大小、会计算一位小数的加减法的基础上进行教学的,本节课的学习为学生提供了综合应用本单元所学知识的机会,有利于进一步培养学生提出问题和解决问题的能力,体会数学的应用价值。

〖学校及学生状况分析〗

我校地处市中心,学生大多数来自城市,家庭环境较好,购物的生活经验较多。因此,很适宜在本节课里开展由学生扮演顾客和售货员的“购物”游戏活动。

〖教学设计〗

(一)导入

师:同学们喜欢旅游吗?你去过哪里?(轻松自然的谈话活跃课堂气氛,调动学生的积极性。)

(二)新课

1.创设情境。

师:我们的老朋友智慧老人、淘气、笑笑、还有机灵狗也趁休息的时间出去旅游了,想知道他们去哪里旅游了吗?我们一起去看看吧。(出示主题情境图)

2.学生观察情境图,开展数学游戏。

师:你们瞧,他们到了哪里?在干什么?

(让学生仔细观察情境图,说说森林食品店里食品的名称及相应的价格,并说说笑笑、机灵狗想买什么。)

师:哦,笑笑、淘气他们玩累了,也饿了,想买东西吃。哪位同学自愿来当这个森林食品店里的服务员,为他们来服务呢?请另一个同学来扮演顾客,买东西。

(请两个同学上台表演。)

师:下面,我要请我们班上的每个同学都来参加这个游戏。同桌两个人,一人扮演顾客,另外一人扮演服务员。听清游戏规则:每人都有5分的基础分;“服务员”每解决一个问题并且令“顾客”满意,可加1分;“顾客”能发现并指出“服务员”的一个失误,并被对方认可,可加1分;“服务员”每失误一次扣一分;如果“服务员”能发现并指出“顾客”对自己失误的指控是错的,并能以理服人,那么“服务员”加1分,“顾客”扣1分;在事先规定到第一家商店“森林食品店”购物10分的时间内,积分达到10分以上者,可荣获“优秀服务员”或“精明顾客”的荣誉称号; 在第二家商店“纪念品商店”里,同桌两人可交换角色,重新按游戏规则计分、评比。

(课堂总结,评选“优秀服务员”或“精明顾客”,并让获奖的学生谈谈自己的感受。)

〖教学反思〗

本节课我把较为生硬的问题情境设计成学生之间互动的数学游戏,把课堂变成商店,把学生变成顾客或售货员,学生参与、学习的积极性相当高。学生在游戏中既获得知识与能力的提高,也体会到数学在生活中的广泛应用,激发学习数学的兴趣。

〖案例点评〗

教师能根据教材的内容重新组织数学活动,采取儿童喜欢的游戏形式开展教学活动,在熟悉的购物活动中复习小数的加减法、比较小数的大小,不但达到了知识领域的教学目标,而且有利于培养学生学习数学的兴趣,培养学生的合作能力。但整节课仅有一个数学活动,略显单调和乏味,另外,活动的规则也过于繁琐。

教学设计数学模板篇8

等比数列的前n 项和

( 第一课时)

一。 教材分析。

( 1)教材的地位与作用:《等比数列的前 n 项和》选自《普通高中课程标准数学教科书·数学

( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思

想方法,都是学生今后学习和工作中必备的数学素养。

(2)从知识的体系来看:“等比数列的前 n 项和”是“等差数列及其前 n 项和”与“等比数列”

? 内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫

二。学情分析。

( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。

( 2)教学对象:高二理科班的学生,学习兴趣比较浓 , 表现欲较强 , 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深

刻,因而片面、不够严谨。

(3)从学生的认知角度来看: 学生很容易把本节内容与等差数列前

n 项和从公式的形成、特点等方

面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前

n 项和公式

的推导有着本质的不同,这对学生的思维是一个突破,另外,对于

q = 1 这一特殊情况,学生往??

容易忽视,尤其是在后面使用的过程中容易出错。

三。教学目标。

根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为: (1)知识技能目标————理解并掌握等比数列前

n 项和公式的推导过程、公式的特点,在此

基础上,并能初步应用公式解决与之有关的问题。

(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类

比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的

---

-

能力。

(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的

体验,感受数学的奇异美、结构的对称美、形式的

简洁美。

四。重点 , 难点分析。

教学重点:公式的推导、公式的特点和公式的运用。

教学难点:公式的推导方法及公式应用中

q 与 1 的关系 。

五。教法与学法分析 。

培养学生学会学习、学会探究是全面发展学生能力的重要前提, 是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为: “知识不是被动吸收的, 而是由认知主体主动建构的。”这个观点从教学的角度来理解就是: 知识不是通过教师传授得到的, 而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而

获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话: 还课堂以生命力,还学生以活力。

六。课堂设计

(一)创设情境,提出问题。(时间设定:

3 分钟)

[ 利用投影展示 ] 在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,

对他说:我可以满足你的任何要求。西萨说:请给我棋盘的

64 个方格上,第一格放

1 粒小麦,第二

格放 2 粒,第三格放 4 粒,往后每一格都是前一格的两倍,直至第

64 格。国王令宫廷数学家计算,

结果出来后,国王大吃一惊。为什么呢?

[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节

课的主题与重点 ]

---

-

提出问题 1:同学们,你们知道西萨要的是多少粒小麦吗?

引导学生写出麦粒总数 1

2

222

326

3(二)师生互动,探究问题 [5 分钟 ] 提出问题 2:1+ 2+ 2 + 2 +

23

+2

63

究竟等于多少呢 ?

) 有学生会说:用计算器来求(老师当然肯定这种做法,但学生很快发现比较难求。 提出问题 3:同学们,我们来分析一下这个和式有什么特征?(学生会发现,

后一项都是前一项的 2

倍)

提出问题 4:如果我们把每一项都乘以

2,就变成了它的后一项,那么我们若在此等式两边同以

得到另一式:

[ [ 利用投影展示 ]

?.。s6463 1 2 2

2

3

2

2、。.。.。.。.(1)

2s64 22 2

2

3

2

46

42、。.。.。.(2)

比较( 1)(2 )两式,你有什么发现?(学生经过比较发现:( 1)、( 2)两式有许多相同的项)

提出问题 5:将两式相减,相同的项就消去了,得到什么呢?。(学生会发现:

s 64

26

41

[ 这五个问题的设计意图:层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错

位相减,经过繁难的计算之苦后,突然发现上述解法,也让学生感受到这种方法的神奇

]

这时,老师向同学们介绍错位相减法,并

提出问题 6:同学们反思一下我们错位相减法求此题的过程,为??

么( 1)式两边要同乘以 2 呢?

[这个问题的设计意图 :让学生对错位相减法有一个深刻的认识,也为探究等比数列求和公式的推导

做好铺垫 ]

(三)类比联想,解决问题。 [ 时间设定: 10 分钟 ]

提出问题 7: 设等比数列 a a n 的首项为1, 公比为 q, 求它的前项和 sn

即 s n a1 a2 a3

a

n

学生开展合作学习 , 讨论交流,老师巡视课堂,发现有典型解法的,叫同

学板书在黑板上。

[ 设计意图:从特殊到一般 ,从模仿到创新 , 有利于学生的知识迁移和能力提高,让学生在探索过程

中,充分感受到成功的情感体验 ]

---

2,

-

(四)分析比较,开拓思维。 [ 时间设定: 5 分钟 ]

将不同的的方法进等行比分析数评列价。{根an据},学公生比的为认识q状,况它,的可前能有n如下项几和种方法:

错位相减法 1:

s

n

aa1 q a q

21

1

a q

n 2

a q

n 1

1

qsn

a1 q a1q

2

(1 q)sn a1等比数列

a1 q a1q a1 qna1q

n2n1n

错位相减法2{ an },公比为

a2 a2

q

,它的前 n 项和

sn a1

qs n

a3 a3

a n 1a

an an

n 1

an q

(1 q ) sna1 an q

等比数列 {an },公比为

,它的前 n 项和

提出公比 q

qsn a

1a2 a3

2s a a q a q

n

1

1

aa1

n 1n

a q

1

1

n2

a q

1 1

n1

1 1

a

1

q(a a q

1a q

n 1n

n

3a q )

n2

aq

( sn

a1q )

(1 q)sn

a1 a1 q累加法

等比数列 { an },公比为 ,它的前 n 项和

q

aa

n 1

sn a1 a2 a3

n

a2 a3 a4 an a2 a3

a1 q a2 q a3 q

an 1q

an q( a1 a2 a3

an 1 )

sn a1 q( sn an )

(1 q)sn a1anq

可能也有同学会想到由等比定理得

---

-

sn a1 a2 a3

a2 a3

a1 a2 a2 a3

an

aaan an

n 1

q

q

即 a1 a2 san n 1

1 an q sn

(1 q)sn a1 anq

?设计意图:共享学习成果,开拓了思维,感受数学的奇异美 (五)。归纳提炼,构建新知。 [ 时间设定: 3 分钟 ]

提出问题 8: 由

?

(1- q)s = aq

1? q 1 时是什么数列?此时 sn ?

?设计意图:通过反问精讲,一方面使学生加深对知识的认识, 完善知识结构,增强思维的严谨性】

?

提出问题 9: 等比数列的前 n项和公式怎样 ?

a1 (1 q )

n

, q 1

a1 an q

sn1 学生归纳出 sn

, q 1

1 q

na1, q 1 q

na1 , q 1

?设计意图:向学生渗透分类讨论数学思想,加深对公式特征的了解 (六)层层深入,掌握新知 。[ 时间设定: 15 分钟 ]

?

基础练习 1已知 an 是等比数列 , 公比为 q

(1)若a=,q=,则s 1 3

3n(2)。则a1

2, q 1,则sn

练习 2 判断是非

n 2 1

1 (1 2 )

n(1)。1-2+4-8+16-

+ -2

2 3

n

1 ( 2)

n

1 (1 2 )

(2)。1 2

2

2

2

2

3

8

1 2

8a(1 a )

1 a

(3)。a a

a

a

?设计意图:通过两道简单题来剖析公式中的基本量。进行正反两方面的“短、浅、快” 练习。通

---

-

过总结、辨析和反思,强化公式的结构特征。 】

例 1 已知数列 an 是等比数列 , 完成下表

题号 a1 (1) 1/2 (2) 27 q 1/2 2/3

n

8

an

sn

8

( ) -2 -96

-6

33【设计意图:渗透方程思想 。通过公式的正用和逆用进一步提高学生运用知识的能力 三求二 ”的题型 】

?掌握公式中 ”知

练习 3:求等比数列 1, 1 , 1 , ,

2 4 8 16

1 1 1

11前 8 项和;

63

变式 1、等比数列 2 , 4 , 8 ,16,

前多少项的和是 64 ;

111变式 2、等比数列

, , 1 , , 求第 5 项到第 10 项的和;

2 4 8 16

变式 3、等比数列 a,a,a,

2

3a, 求前 2n 项中所有偶数项的和。

n

(先由学生独立求解,然后抽学生板演,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光

点,给予热情表扬。 )

?设计意图:变式训练 ,深化认识,增加思维的梯度的同时,提高学生的模式识别能力,渗透转化思

想】。

练习 4

有一位大学生毕业后到一家私营企业去工作,试用期过后,老板对这位大学生很欣赏,

有意留下他,就让这位大学生提出待遇方面的要求,这位学生提出了两种方案让老板选择,其一:

工作一年,月薪五千元;其二:工作一年,第一个月的工资为

20 元,以后每个月的工资是上月工资

的 2 倍,此时,老板不假思索就选择了第二种方案,于是他们之间就订了一个劳动待遇合同。请你分析一下,老板的选择是否正确?

?设计意图: 让学生进一步认识到数学来源于生活并应用于生活,生活中处处有数学。

?

(七)总结归纳,加深理解。 [ 时间设定: 2 分钟 ]

(1)等比数列的求和公式是什么?应用时要注意什么? (2)用什么方法可以推导了等比数列的求和公式?

?设计意图:形成知识模块,从知识的归纳延伸到思想方法的提炼,优化学生的认知结构】

(八)课后作业,巩固提高。 [ 时间设定: 1 分钟 ]

必做:( 1)p66练习 1

---

-

研究性作业:请上网查阅“芝诺悖论”

选做:求和: 1 2 2 22 3 23 4 24

n

2n

?设计意图:为了使所有学生巩固所学知识,布置了“必做题”

;“选做题”又为学有余力者留有自

?】 由发展的空间,布置了“探究题”以利于学生开展研究性学习,拓展学生的视野

七、教学反思:

本节课立足课本,着力挖掘,设计合理,层次分明。充分体现以学生发展为本,培养学生的观察、概括和探究能力, 遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,

通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究

能力的训练,引导学生发现数学的美,体验求知的乐趣。

---

教学目标:

1、掌握基本事件的概念;

2、正确理解古典概型的两大特点:有限性、等可能性;

3、掌握古典概型的概率计算公式,并能计算有关随机事件的概率.

教学重点:

掌握古典概型这一模型.

教学难点:

如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题。

教学方法:

问题教学、合作学习、讲解法、多媒体辅助教学.

教学过程:

一、问题情境

1、有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?

二、学生活动

1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;

2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;

(2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,

这6种情况的可能性都相等;

三、建构数学

1.介绍基本事件的概念,等可能基本事件的概念;

2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);

3.得出随机事件发生的概率公式:

四、数学运用

1.例题。

例1

有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)

探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)

探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?

学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.

探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.

(设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)

例2

一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中

一次摸出2只球,则摸到的两只球都是白球的概率是多少?

问题:在运用古典概型计算事件的概率时应当注意什么?

①判断概率模型是否为古典概型

②找出随机事件a中包含的基本事件的个数和试验中基本事件的总数.

教师示范并总结用古典概型计算随机事件的概率的步骤

例3

同时抛两颗骰子,观察向上的点数,问:

(1)共有多少个不同的可能结果?

(2)点数之和是6的可能结果有多少种?

(3)点数之和是6的概率是多少?

问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?

学生活动:用课本第102页图3-2-2,可直观的列出事件a中包含的基本事件的个数和试验中基本事件的总数.

问题:点数之和是3的倍数的可能结果有多少种?

(介绍图表法)

例4

甲、乙两人作出拳游戏(锤子、剪刀、布),求:

(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率。

设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.

2.练习。

(1)一枚硬币连掷3次,只有一次出现正面的概率为_________.

(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..

(3)第103页练习1,2.

(4)从1,2,3,…,9这9个数字中任取2个数字,

①2个数字都是奇数的概率为_________;

②2个数字之和为偶数的概率为_________.

五、要点归纳与方法小结

本节课学习了以下内容:

1.基本事件,古典概型的概念和特点;

2.古典概型概率计算公式以及注意事项;

3、求基本事件总数常用的方法:列举法、图表法.

会计实习心得体会最新模板相关文章:

五六年级数学教学工作总结优秀8篇

小学数学一年级第一学期教学工作计划8篇

八年级下学期数学教学工作计划推荐8篇

初中数学教师教学反思5篇

初中数学教师教学反思优质6篇

小学数学教学总结6篇

初中数学八年级教学计划7篇

小学数学教学总结通用7篇

小学数学老师教学心得体会7篇

初中数学教师教学工作总结5篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    66086

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。