教案可以帮助教师制定好课堂纪律和行为规范,以促进学生的自律和秩序,优秀的教案应当能够提供多样化的学习活动,二十范文网小编今天就为您带来了北师大版四上数学教案6篇,相信一定会对你有所帮助。
北师大版四上数学教案篇1
一、学习目标
(一)学习内容
“正方体的认识”是《义务教育教科书数学》(人教版)五年级下册第三单元第20页例3以及课后做一做。本节内容是在学生已经直观的认识了长方体、正方体等立体图形的基础上进行教学的。学生能通过实物或模型辨认正方体,知道正方体有6个面,每个面都是正方形。在教学正方体时,应激活经验,回顾特点,对比长方体特点,感知“正方体是特殊的长方体”。
(二)核心能力
能运用迁移类推的学习方法,通过观察、操作,认识正方体,建立空间观念,提高分析对比,抽象概括的能力。
(三)学习目标
1.在认识长方体的基础上,通过观察正方体、动手操作折正方体,自主探究正方体关于面、棱、顶点的特征,建立空间观念。
2.通过对比分析长方体和正方体的特征,抽象概括出长方体和正方体之间的关系。
(四)学习重点
掌握正方体的特征,理解长方体和正方体的关系。
(五)学习难点
建立空间观念,形成立体图形的初步印象。
(六)配套资源
实施资源:《正方体的认识》名师教学课件,各种正方体实物,长方体模型,剪好书本第123页的正方体展开图。
二、学习设计
(一)课前设计
(1)长方体的特征有哪些?我们是从几方面来认识它的?请自己整理出来。
(2)请找找生活中的正方体物品,并思考:关于正方体你都知道了哪些知识?
(二)课堂设计
1.谈话导入
师:课前让同学们寻找生活中的正方体物品,谁来和大家分享一下你找到了什么?
师:生活中有许多物体的形状是正方体,正方体也叫立方体,这节课我们一起来认识它。板书课题。
?设计意图:结合生活实际,学生对正方体已有一定的认识,因此通过分享学生在生活中找到的正方体,使学生对正方体有了初步的了解,激发了进一步学习正方体的兴趣。】
2.问题探究
(1)观察模型,探究特征
师:长方体和正方体都属于立体图形,回想一下,我们是从几方面来认识长方体的?
(面、棱、顶点,长宽高)
师:对于正方体,你们准备从几方面来认识?
生自由发言。
师:现在请你们借助手中的正方体物品来观察研究,看看正方体都有哪些特征?
同桌合作,自主探求正方体的特征。
交流汇报。(汇报时重在交流探究的过程和方法)
预设:
①正方体有6个面,每个面都是正方形并且6个面都相等;
②正方体有12条棱,每条棱都相等;
③正方体有8个顶点。
小结:同学们从棱、面、顶点三方面进行研究,得出了“正方体是有6个完全相同的正方形围成的立体图形,12条棱长度相等”的结论。
(2)制作模型,加深认识特征
师:认识了正方体的特征,现在请你们动手制作一个正方体,制作完后,量出它的棱长是多少厘米,并向同桌介绍你制作的正方体的特征。
用剪好的书本第123页的正方体展开图做一个正方体。
展示学生作品分享制作感想。
?设计意图:学完长方体后,学生已明确了面、棱、顶点的概念,知道了从哪些方面探究图形特征,因此放手让学生自主探究,充分经历自主探究的过程,通过观察、动手,学生亲身感知正方体这个立体图形。考查目标1】
(3)对比观察,探究长方体和正方体的关系
师:我们都是从面、棱、顶点来认识长方体和正方体,它们之间有什么相同点和不同点呢?请4人小组,用你们喜欢的方式整理出来。
交流汇报后,教师用表格的形式进行整理。
引导归纳长方体和正方体的关系:正方体可以看成是长、宽、高都相等的长方体。
3.巩固练习
(1)第20页的做一做。用棱长为1cm的小正方体搭一搭。
①搭一个稍大一些的正方体,至少需要多少个小正方体?动手试一试。
②用12个小正方体搭一个长方体,可以有几种不同的搭法?记录搭的长方体的长、宽、高。
③搭一个四个面是正方形的长方体,其余两个面有什么特点
4.课堂总结
师:通过这节课的学习,你有什么收获?
小结:从面、棱、顶点三方面认识了正方体,有6个面,都相等,12条棱也都相等,有8个顶点,正方体是特殊的长方体。
北师大版四上数学教案篇2
教学目标:
1、借助现实情景认识线段、射线、直线。会用字母正确读出线段、射线与直线。
2、培养操作、观察、发现、总结、概括等能力。
3、体验数学与日常生活密切相关,感受数学的重要作用。在活动中进一步发展空间观念。
教学重点:
认识、区分线段、射线与直线。
教学难点:
理解直线与射线的含义。
教学用具:实物展示台
教学过程:
(一)创设情景、导入新课
(二)小组合作,深入探究
1、认识线段
(1)建立线段的数学模型,认识端点
(3)画线段
师:请你在练习本上画出1条线段,师巡视指画法不同的学生画在黑板上,同位互相看一看画的线段,反馈出线的问题。如:画弯,没点两个端点,画的方向等。
追问:你认为谁画的对?为什么?不加两个端点行吗?两个端点的作用是什么?你认为画线段时要注意哪几点?
强调线段的方向可以自由调整。
(4)读线段
师:谁能帮老师给黑板上的这条线段起个名字?怎么读呢?
根据学生的回答给两个端点命名,给线段命名,生读,师板书:读作:线段ab(或ba)指出有两种读法。
强调:读线段时可以从任意一个端点读起。
(5)找线段
师:其实在我们的身边有很多条线段,请你找出1条线段,用手指出它的两个端点,与同桌说一说。
同位互动,指2个生汇报。
2、认识射线。
(1)建立射线的数学模型
课件演示手电筒的'灯泡发射出一束光线,问:你看到了什么?
(2)画、读射线
师:射线有什么特点?怎么画?怎么读呢?请你先思考再动手试一试,完成后和同桌交流。
师巡视发现问题,让一组同桌到黑板上板演。
师:刚才你在画射线时遇到了哪些困惑?又是怎样解决?读射线呢?
引导学生在辩论中明确:·要先画一个端点,然后沿着任意一个方向画一条直直的线,指出:由于射线无限长我们只需要画出线的一部分就可以了。·为了方便读,要把射线的端点用大写字母“a”表示,再在射线上任取一个点用“b”表示,但是不能取在两端,读作:射线ab,不能读射线ba,读射线时要从端点读起,只有一种读法。
(3)寻找射线
师:想一想,在生活中见到过哪些物体发出的射线?
引导学生说出:激光、探照灯、红外线、太阳、灯泡等。
师:别忘了恩泽地球上万物生灵的太阳发出的光线也是射线。
3、认识直线
(1)建立直线的数学模型
(2)画、读直线
师:直线又有什么特点?怎么画?怎么读呢?请你先思考再动手试一试,完成后在四人小组内交流。
师巡视发现问题,让一个四人小组到黑板上板演。
师:谁有不同的想法?追问:点a、点b是直线的端点吗?为什么?
引导学生在辩论中明确:·由于直线无限长我们只需要画出线的一部分就可以了。·为了方便读,要在直线上任意取两个点用a、b表示,但是不能取在两端,读作:直线ab(或ba),读直线时从哪一端读起都可以,有两种读法。
(4)找直线
师:实际上在生活中根本不存在真正的直线,比如当一条笔直的马路一眼望不到头向两端直直的无限延伸时才可以把它近似的看作一条直线。想一想,生活中还有类似的例子吗?
生举例如:高压线、铁路、高速公路等。
(三)实践活动,归纳特征
比较三线的区别与联系:
师:今天我们认识了三种线,请你认真观察它们有哪些相同的地方或不同的地方?
指生说其余同学补充。
指出:看来三种线既有区别又有联系。
课件演示:·直线向两端无限延伸;·在直线上截取1条线段;·一条线段去掉1个端点向一端无限延伸,就可以得到一条射线;·线段、射线也是直线的一部分。
(四)综合运用,感知提升
师:今天我们认识了直线、射线、线段3位好朋友,下面让我们和它们一起来玩玩闯关游戏,好吗?
第一关:猜谜语,打一线的名称。
1、有始有终(线段)
2、无始无终(直线)
3、有始无终(射线)
第二关:他们谁说对了?
1、小明说:我画的线段长4厘米。(对)
2、小红说:我画的射线长1米。(错)
3、小丽说:我画的直线长2分米。(错)
第三关:试一试画直线。
1、过一点画直线
先任意画一点,然后过一点画直线,师带领学生完成。
体会:过一点,可以画出无数条直线。
2、过两点,画直线。
学生操作体会。
追问:能不能再画呢?
总结过两点只能画一条直线。
第四关:你发现了什么?
从老虎山到狐狸洞有许多条道路,哪条路最短?(小结:两点间的所有连线中,线段最短)
(五)检测。
判断题:
(1)直线ab长30cm。()
(2)线段的一端能无限延长。()
(3)线段cd长5cm。()
(4)射线的两端能无限延长。()
北师大版四上数学教案篇3
教学目标:
1、通过对生活优化问题的合作探究,感悟合理、快捷解决问题的策略,提高学生解决问题的能力。
2、初步感受统筹思想在日常生活中的应用,尝试用统筹的方法来解决实际问题。
3、使学生在自主探索、合作交流中积累数学活动的经验,逐渐养成科学合理安排时间的良好习惯。
教学重点、难点:
重点:尝试合理安排时间的过程,体会合理安排时间的重要性。
难点:掌握合理安排时间的方法。
教法:启发法
学法:练习法
教具准备:
多媒体课件
教学过程:
一、联系生活,谈话导入。
同学们,你们干过家务活吗?谁能说说都做了那些家务?(学生发言)
周末小明也主动帮妈妈做家务,瞧,他做了些什么?(课件出示)
项目扫地擦桌子烧开水
时间8分钟2分钟10分钟
他把做家务的时间也记录下来了,你猜:小明完成这些家务一共需要几分钟?
今天我们就来学习有关科学、合理安排时间方面的知识。(出示课题)
二、创设情境,探究新知。
1、沏茶问题
谁沏过茶?请举手。你平时沏茶的时候都需要做哪些事?你会先做什么?后做什么?估一估,做这些事情你需要多长时
间?(指名说)
(2)看一看,淘气沏茶要做几件事情?(出示课件)从画面中你得到了哪些信息?
如果淘气一件一件地完成,需要多长时间?但小明是个爱动脑的好孩子。他想什么呢?(出示课件),怎样才能尽快
地让客人喝上茶?”尽快”二字怎样理解?
聪明的小明就想跟大伙比比,看谁能设计出一个最佳的沏茶方案。出示课件。
小明也给咱们发来了一个温馨提示的信息:设计时应该考虑:1、先做什么?再做什么?哪些事又可以同时做?2、可用
箭头“→”标出做事的先后顺序3、经你合理安排,计算出一共用了多少时间?节省了多少时间?下面,就以小组为单
位,合作探究,与小明比比吧。板书示范。
③互相交流,比比谁的设计方案即合理又省时。
(3)学生展示、解说设计方案,学生集体观察。
方案a:洗水壶1分钟→接水1分钟→烧水8分钟→沏茶1分钟
洗茶杯2分钟
找茶叶1分钟
1+1+8+1=11(分钟)
方案b:洗水壶1分钟→接水1分钟→烧水8分钟→沏茶1分钟
找茶叶1分钟
洗茶杯2分钟
1+1+8+1=11(分钟)
方案c:洗水壶1分钟→接水1分钟→烧水8分钟→找茶叶1分钟→洗茶杯2分钟→沏茶1分钟
1+1+8+1+2+1=14(分钟)
对这些方案,你认为哪种方案最合理,又省时间?为什么(同时)?学生说,师板书工序流程。出示课件,指导学生看
流程图。
此时,小淘气的方案也出来了。(出示课件),你能看懂他的沏茶方案吗?
请同学们再想想,在哪个时间内还可以做些什么事?(学生说)能节省多长时间?多做了几件事?(揭示:同时做的事
情越多就会越节省时间)
像小明写的这样图示,我们把它叫做“流程图”
三、运用知识,解决问题。
1、引导学生完成教材第82页的烙饼。小组汇报交流。
四、当堂训练
1、判断:这样安排时间合理吗?为什么?(课件出示)
a、小东边吃饭边看电视。
b、边打电话边骑车。
c、一边走路一边看书。
d、在马路上踢球。
五、畅谈收获,全课小结。
生活中还有哪些事情可以通过合理安排来提高效率?
总结全课:通过今天的学习,你有什么收获?
最后老师把伟大的文学家鲁迅的一句话送给大家,与大家共勉(课件):“时间,每天得到的都是24小时,可是一天的
时间给勤勉的人带来智慧和力量,给懒散的人只能留下一片悔恨。”
六、作业
板书设计:
统筹安排时间
先后有序同时完成科学合理
最佳方案:洗水壶→接水→烧水→沏茶
同↓洗茶杯
时找茶叶
课后反思:
北师大版四上数学教案篇4
教学内容:教材第14~15页。
教学目标:
1、在实践活动中认识奇数和偶数 ,了解奇偶性的规律。
2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。
3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
教学重点:探索并理解数的奇偶性
教学难点:能应用数的奇偶性分析和解释生活中一些简单问题
教学过程:
一、游戏导入,感受奇偶性
1、游戏:换座位
首先将全班39个学生分成6组,人数分别为4、5、6、7、8、9。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。
(游戏后学生发现4人、6人、8人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位)
2、讨论:为什么会出现这种情况呢?
学生能很直观的找出原因,并说清这是由于4、6、8恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。
(此时学生议论纷纷,正是引出偶数、奇数的时机)
3、小结:交换位置时两两交换,有的小组刚好都能换位置,像4、6、8、10……是2的倍数,这样的数就叫做偶数;而有的小组有人不能与别人换位置,像5、7、9……不是2的倍数,这样的数就叫做奇数。
学生相互举例说说怎样的数是奇数,怎样的数是偶数。
二、猜想验证,认识奇偶性
活动1
(1)出示题目和情景图:小船最初在南岸,从南岸驶向北岸,再从北岸驶向南岸,不断往返。
(2)提出问题:小船摆渡11次后,船在南岸还是北岸?为什么?
(3)探究活动
学生可能会运用数的方法得出结果,不一定正确。
师:小船摆渡100次后,船在南岸还是北岸?你会怎样做?能保证正确吗?
引导学生运用策略:①列表法;②画示意图法。
三、实践操作、应用奇偶性
我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。
1、试一试
(1)一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上……翻动10次呢?翻动19次?105次?请尝试说明理由。
学生动手操作,发现规律:奇数次朝下,偶数次朝上。
师:把杯子换成硬币,你能提出类似的问题吗?
(2)有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下?
你手上只有一个杯子怎么办?(学生:小组合作)
学生开始动手操作。
反馈:有一小部分学生说能,但是上台展示,要么违反规则,要么无法进行下去。
引导感受:如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题的所在。
学生动手操作,尝试发现
交流:一开始杯口朝上的杯子是3只,是奇数;第一次翻转后,杯口朝上的变为1只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。由此可知:无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数。也就是说,不可能使3只杯子全部杯口朝下。
学生再次操作,感受过程,体验结论。
2、活动2
出示两组数:圆中的数有什么特点?正方形中的数有什么特点?
(1)学生独立猜想,完成“试一试”,小组内汇报交流,然后统一意见进行验证(要求:验证时多选几组进行证明)。
如果两个数相减呢?如果是连加或连减呢?
汇报成果:
(1)奇数﹢奇数=偶数 (2)奇数-奇数=偶数 (3)奇数+奇数+……+奇数=奇数(奇数个)
偶数+偶数=偶数 偶数-偶数=偶数 奇数+奇数+……+奇数=偶数(偶数个)
奇数+偶数=奇数 奇数-偶数=奇数 偶数+偶数+……+偶数=偶数
你能举几个例子说明一下吗?
(学生的举例可以引导从正反两个角度进行)
(2)运用判断下列算式的结果是奇数还是偶数。
10389 + 2004:_____ 46786-5787: _____ 11231+2557+3379+105:
11387 + 131: _____ 60075-997: _____ 335+7757+223+66789+73:
268 + 1024: _____ 9876-5432: _____ 2+4+6+8+10……+998+1000:
3、游戏。规则如下:用骰子掷一次,得到一个点数,以a点为起点,连续走两次,转到哪一格,那一格的奖品就归你。谁想上来参加?
学生跃跃欲试……如果继续玩下去有中奖的可能吗?谁不想参加呢?为什么?
生:骰子始终在偶数区内,不管掷的是几,加起来总是偶数,不可能得到奖品。
是呀,这是老师在街上看到的一个,他就是利用了数的奇偶性专门骗小孩子上当,现在你有什么想法?
学生自由说。
四、课堂小结,课后延伸。
1、说说我们这节课探索了什么?你发现了什么?
2、那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?
教学反思:
踏入七中育才(东区),心情就像这九月的天气一样时阴时晴。教学的压力,学生的现状,迫使我不得不放下我原有的教学模式,改进教学策略,尽快适应这所学校紧张的氛围。
听说学校要组织青年教师公开课比赛,我第一个报了名,旨在让其他老师给我提出一些建设性意见,提高我的课堂教学能力。最后定于第三周完成我的展示。
我上的是五年级数学“数的奇偶性”一节内容。报名后,我便积极的着手准备,钻研教材,查阅资料,设计程式,制作课件,并虚心请教了同教研组的余加秋老师和刘红敏老师,征求了他们的意见。
我的设计思路是:多给学生思维的空间;让学生全方位参与学习;要让学生体验到数学的探索方法;体现数学的生活化和趣味性。为此,我的教学目标定格为:1、在实践活动中认识奇数和偶数,了解奇偶性的规律。2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
在此基础上,我对教学过程进行了如下设计:
一、游戏导入,感受奇偶性
通过两两结对入座的游戏引出数的奇偶性
二、猜想验证,认识奇偶性
教学“活动1”,引导学生运用策略:应用列表法和画示意图法探索数的奇偶性。
三、实践操作、应用奇偶性
1、翻杯子游戏。
2、探索整数加减法得数的奇偶性,通过学生独立猜想,小组内交流,统一验证,巩固练习,让学生自主获取新知。
3、游戏“开心乐”,运用数的奇偶性解释生活中的现象。
四、课堂小结,课后延伸。
课后,教研组组织了所有老师评课。老师们各抒己见,既肯定了我的教学风格,又提出了宝贵的意见,让我受益非浅。我也及时的自省,在不同层面上进行了思考。
1、游戏是学生喜闻乐见的教学形式,能够激发学生的学习兴趣。但是不能没有目的性的为了游戏而游戏,应该在游戏中给学生解决数学问题的启发。本节课,我一共设计了两两结对入座的游戏、翻杯子游戏、“开心乐”等三个游戏,都是结合了教学内容而安排的,第一个游戏重在感受数的奇偶性,第二个游戏重在应用数的奇偶性,第三个游戏重在解释数的奇偶性,游戏的重心最后都落到了“数的奇偶性”上,因此起到了预想的效果。
2、现行的教材内容的广度和深度都有很大的挖掘空间,课前的准备将直接影响课堂教学的容量。本节课,教材上仅有两个活动和两个“试一试”,练习几乎没有,两个活动的探索过程也非常简单,学生稍作思考就能得到正确的答案。课前,我查阅了一些资料,将“翻杯子游戏”和“探索整数加减法得数的奇偶性”进一步拓展,并增加了一些练习,使内容更加丰满,但是练习的典型性、层次性仍然不够,还有值得改进的地方。
3、新课后的应用新知,不能单纯的是例题的改版,还应该有所变化,有所突破,注入新的元素,这样才能让学生灵活牢固的掌握所学知识。这节课中,我所设计的练习就过于程式化,没有跳出固有的“圈”,顺向思维练得多,逆向思维练得少,学生很难推陈出新。
4、数学课上的板书必须要能诠释重点,疏通难点。我在这堂课上的板书做到了前者,而疏漏了后者。“探索整数加减法得数的奇偶性”是本节课的重点,我特意将探索结果板书罗列了出来;探索的过程,是一个不完全归纳的思维过程,本是难点,但我没有把算式板书出来,就有点“空对空”的感觉了。
以上仅是我现有的一点感触,我想,随着教学工作的不断深入,我和学生的不断磨合,教学过程中还有许多的问题等着我去解决,我会以的状态去迎接每一次的挑战。
北师大版四上数学教案篇5
教学目标:
1、使学生在现实情境中了解负数产生的背景,初步认识负数,知道正数和负数的读写方法会用正,负数记载相反量。知道0既不足正数,也不足负数,负数都小于0。
2、使学生初步体验数学与日常生活的密切联系,进一步激发学习数学的兴趣。
3、在联想、概括,推演中,体会数学的丰富、联系以及其生活中的应用价值,渗透进行对立统一、联系发展等最朴素的哲学思想教育。
教学重点:
理解负数的意义,初步建立负数的概念。
教学难点:
理解,正数、负数和0之间的关系。
教学过程:
一、从“生活事例”引入——了解负数的来源
1、同学们,不知不觉就到了金秋时节了(课件呈现美丽的秋景图片),大家觉得我们苏州这两天的天气怎么样?(学生回答后,课件呈现苏州天气预报、温度计图)这个温度计上显示的是昨天的最高气温,你能看出昨天的最高气温是多少吗?
(学生汇报过程小,引导学生了解温度计上一般有左右两行刻度以及左右两边刻度名称,左边代表摄氏度,通常用字母℃表示,一大格表示两度)
2、据科学研究,气温在18—24℃时,人体感觉最舒服。昨天达到28℃,我们就感觉热了。猜想:从现在往后,温度计上的红色酒精柱会怎样变化呢?
(设计意图:气温变化是学生生活中每天都会面对和感觉到的自然话题,将此作为课堂教学的开始,自然,贴切,能够吸引学生的广泛参与、考虑到学生对温度计的认识井不是非常熟悉,先单独安排一个看温度计的插曲,为后面新知教学做好了铺垫)
二、由“相反关系”展开——理解负数的意义
(一)教学例1,初步认识负数。
1、老师也是一个非常关注大气变化的人,几乎每天都要看中央电视台的天气预报。有一次我记录了三个城市的最低气温。第一个是东方大都市上海(出示温度计图),你能从温度计上面看出当天上海的最低气温吗?
2、第二个城市是(出示温度计图),你能从温度计上面看出南京的最低气温吗?这个温度比上海的气温怎样?
3、第三个城市是我们伟大祖国的首都北京。根据你的生活经验,北京的气温通常要比上海和南京怎样?学生提出猜想后,出示温度汁图,让学牛说出北京气温”零下4℃”。
4、刚才二个城市的最低气温中,非常巧,南京正好是0摄氏度。而上海超过了0摄氏度,是零上4摄氏度;北京却低于0摄氏度,是零下4摄氏度。这是一组相反的量。大家能想出巧妙的方法来记录这两个相反的气温吗?
5、学生讨论交流自己的设想,老师选择性板书:+4℃或4℃,—4℃等,并讲解负号,正号以及它们的读写。
6、巩固练习。
(1)选择合适的数表示各地的气温:
当天我还记下了几个城市和地区的最低气温,(分别出示西宁、哈尔滨、香港等城市温度计图)你能用这样的方法分别写出它们的.最低气温吗?
(2)小小气象记录员。
我们一起来当气象记录员,一边听天气预报,一边记录气温。课件演示:赤道零上40摄氏度,北极零下26摄氏度,南极零下40摄氏度。
(设计意图:在引入负数这一环节,顺接着课始“看温度计读气温”这一问题情景,从祖国三大城市的气温由高渐低相继展开,教学流畅,衔接自然。而“零上4摄氏度”和“零下4摄氏度”这两个生活中常见的相反温度用怎样的数可以表达并区分?这一问题不仅让学生感受到过去所学的数在表达相反意义的量时的局限性,产生学习新数的需求,而且促使他们借助生活经验联想到在“4”这个数前添加不同的符号表达相反意义的量的方法)
(二)教学例2,深入理解负数。
1、(显示珠穆朗玛峰图)谁知道它有多高吗?(8844米)这个高度是从哪儿到上顶的距离呢?
(学生回答后,在添加8844米前面添加”海拔”,并在图上添加一条海平面的水平虚线)
2、世界上也不是每个地方都比海平面高的,比如,我国的第五大盆地——吐鲁番盆地,就低于海平面155米(接在珠穆朗玛峰图旁边出示盆地图)。
大家能从刚才表示气温的方法受到启发,也用—种比较科学的方法来表示这两个海拔高度呢?(板书:+8844米—155米)
3、模仿练习。
课本第6页“习题一”第1,2题。
4、小结:通过刚才的研究,我们看到,在表示气温时,以0℃为界,高于0℃时用正数表示,低于0℃时用负数表示;在表示海拔高度时,以海平面为界,高于海平面用正数表示,低于海平面用负数表示。
(设计意图:用正负数来表示海拔高度,是学生对相反的量的再一次感知。由于前面有对气温认识的基础,所以本环节力求利用前面学习中获得的用正负数表示气温的经验和范式,在突出“以海平面为界”这一基准后,就让学生尝试解决。学生在先前经验的作用下,容易想到“高于海平面为正、低于海平面为负”的计数规则。在深层次上把握了负数产生的背景和计数的要领与方法)
三、以“比较反思”提升——深化概念的内涵
1、我们用这些数分别表示零上和零下的温度以及海平面以上和海平面以下的高度。(课件同时呈现:温度计和海拔高度图,其中0℃和海平面用红色线标出)
2、观察这些数(课件出示),你能把它们分类?按什么分?分成几类?小组讨论。小结:像+4,40、+8844这样的数都是正数,像—4,—7,—11,—155这样的数都是负数。
3、讨论:0属于正数或负数呢?(指导学生借助网络在设置的讨论区内发表意见)
引导学生辨析:从温度计上观察,0摄氏度以上的数都是正数,0摄氏度以下的数都是负数。海平面以上的数都是正数,海平面以下的数都是负数。
教师借助课件观察画有箭头的轩线(即数轴),认识到:0是下数和负数的分界线,0既不是正数也不是负数。正数大于0,负数小于0。
4、习题—完成第3页“练…—练”第l题(在原题中增加0)。
提问:
(1)0为什么不写?(0既不是正数,也不是负数)
(2)观察这些正数,你发现了什么?
(我们以前学过的除0以外的数都是正数)
5、出示“你知道吗?——中国是最早使用负数的国家”。(学生自由浏览网上资源)
(设计意图:本课是学生初次认识负数,为了让学生对负数的内涵与外延有完整的认识,这里将温度计、海拔高度图同时出示,让学生直观地感受零度刻度线、海平面是分界点。让学生很好地借助直观情景来理解接纳正数,负数与0三者间的关系。同时在习题中注意让学生体会过去已学过的数(除0外)都是正数,以帮助学生沟通新旧知识的内在联系)
四、用“多层习题”巩固——拓展负数的的外延
1、基本练习。
每人写出5个正数和5个负数,并进行交流:读出所写的数,并判断写的是否正确。
2、对比练习。
选择合适的结果填在括号内:
20xx年,我国发射成功的嫦娥卫星在太空中向阳面的温度为()以上,而背阳面却低于(),但通过隔热和控制,卫星舱内的温度始终保持在(),保证了卫星能够正常开展探测工作。
①21℃②100℃③—100℃
3、应用练习。
(1)“生活中的负数”信息发布会。
说一说:生活中还有哪些情况也可以用正数或负数来表示?
随后课件配合出示有关图片。
(2)小结:像零摄氏度以上与零摄氏度以下,海平面以上和海平面以下,地面以上和地面以下,存入和取出,比赛的得分和失分,股票的上涨和下跌等等都是相反意义的量,都可以用正负数来表示。
4、拓展延伸。
调查自己家一个月的收入、支出情况,并作好记录,记录后对数据进行分析,把自己的感受与家人说一说,用数学日记记下自己的感受及开支建议。
北师大版四上数学教案篇6
教学内容:北师大版小学数学五年级上册第一单元。
教学目标:
1、尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。
2、通过活动,让学生经历猜想结果,举例验证,得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。
3、让学生在活动中体验研究方法,提高推理能力。
教学准备:一次性纸杯、硬币、课件等。
教学过程环节设计:
一、创设情境,产生认知冲突。
师:同学们,有一位家住在河南岸,以摆渡为生的船夫,想请我代他向同学们提一个问题,不知同学们是否愿意帮这位船夫解决一下呢?
(愿意)
课件出示情境图和问题。
?设计意图】创设情境,让学生产生认知冲突,激发学生的学习兴趣,将学生引入到新知探究中来,调动学习的积极性。
二、分组活动,动手操作,感受奇偶性,建构数学模型。
1、活动一:
讨论:船夫将小船摆渡11次后,船在南岸还是北岸?
小组合作,教师引导学生尝试用“列表”、“画示意图”等方式探究。小组汇报时,展示表格或示意图,全班交流。
2、活动二:
一个纸杯子杯口朝上放在桌上,翻动1次杯口朝下,翻动2次杯口朝上,翻动10次呢?翻动19次呢?100次呢?
学生动手操作,发现规律,汇报结果。
师:同学们,如果把“杯子”换成“硬币”,你能提出怎样的问题?试着回答这些问题,并用硬币操作验证自己的结论。
3、活动三:
讨论:加法中数的奇偶性与结果的奇偶性。
课件出示填有偶数的图形,奇数的正方形。
小组合作,完成表格(先猜一猜结果,再举例验证)
小组汇报,全班交流。
(师板书:)
偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
?设计意图】让学生通过活动,经历加法中加数与和的奇偶性特点。培养提出问题,猜想结果,再实践验证的数学习惯,发展学生主动探究的能力。注重学生相互之间的交流,创设自主、合作、探究的数学学习课堂,让学生经历数学模型建构的全过程。
三、运用模型,解决问题。
1、判断下列算式的结果是奇数还是偶数。
10389+2004: 11387+131:
268+1024: 46786+25787:
6007+8997:
2、有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下?
你手上只有一个杯子怎么办?
……(学生小组合作)
完成后,汇报反馈。
3、数学游戏。
规则如下:用骰子掷一次,得到一个点数,以 a点为起点,连续走两次,转到哪一格,那一格的奖品归你。
谁想上来参加?
……(学生玩游戏。)
这样玩下去,能获得奖品吗?为什么?
?设计意图】采用层层推进的方法,让学生学会运用所学的数学知识,解决生活中的实际问题。学会从生活实际中寻找数学问题,能运用数学知识分析并解决生活中的数学问题。培养学生的数学应用意识,提高学生的数学综合素质。
四、课堂小结,课后延伸。
1、说说我们这节课探索了什么?你发现了什么?
2、如果将4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?
板书设计:
数 的 奇 偶 性
偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
会计实习心得体会最新模板相关文章: